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I. INTRO[)UCT!O'\

To introduce the problem dealt with in this paper, a description of the
situation in the special but very important approximation process, namely,
the best nth degree trigonometric approximation in C(T), will be given. We
denote

E,;C!l1 == inf IiI - Tn III'
TilE .7.,

( \.I )

where X is a space of functions (or distributions) on T and Y-" is the space
of trigonometric polynomials of degree n. The Jackson inequality

where

(1.2 )

w'(j: 1)1 == sup
0<11:'(1

(1.3 )

(AV'(x)=f(x)) and the Bernstein inequality

II T~;) II x:S: n'll Til x for Tn E.r" (1.4 )

are valid for many spaces of functions on T. (In particular (1.2) and (1.4)
are satisfied for spaces of functions on T for which the translation T( t) is
continuous in l and II T( l) II = 1.) These inequalities imply for 0 <x < r,

(1.5 )
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For the sake of brevity, we will write w'(l f), E,;(f) and IIIII instead of
w'U: t)x, E,;Ulx, and IIIII x when X will be understood from the context.

At first, one might think that in the situation above, i.e., when w'U: t) =
D(rX), we will have o/(f lin) ~ E,;(f), which implies the exact converse of
(1.2). Unfortunately, this turns out to be false, as can be shown by modify
ing an example given by Boman [3] or using the classical proof (by
constructive contradiction) of the Banach-Steinhaus theorem as done by
Dickmeis, Nessel, and Wickeren in many articles (sec, for example, [4,9]).
A question of this type was posed by Stechkin in a conference on construc
tive function theory, 1977, in Blagoevgrad, Bulgaria. Stechkin asked if for
IE C( T) which does not belong C f (T) there exists an r such that
w'U; lin) ~ CE,;(f). That question was answered negatively by Boman
[3]. It seems natural to look at the same question in a positive manner
and ask if there is a simple condition on the behaviour of w'U; f) or of
E,';(f) that will imply for some r.

(1.6 )

In fact this type of question was answered for trigonometric polynomials
on C( T) and probably other spaces by several Russian mathematicians,
notably N. K. Bari and S. B. Stechkin [2]. In [2] (see Lemma 7, p. 513) it
was shown that for a nondecreasing continuous function in [0, n], tf;,
satisfying tf; ,(0) = 0 and tf; ,(r) # 0 for f # 0 satisfies the condition

one has

6'j'Ctf;,(U)d ~"'(6)
r -+ 1 U If'r ,

() U

E,;(f) ~ tf;( lin) =- w'(r, t) ~ tf;(t),

(1.7 )

(1.8)

and therefore, (1.6) is satisfied.
A result of this type for general non-linear processes of best approxima

tion that possess Jackson- and Bernstein-type inequalities will be shown.
Moreover, analogous results will be achieved relating the best weighted
algebraic polynomial approximation on [- I, I] or R to moduli that do
not satisfy the Jackson inequality but a weaker inequality that should
perhaps be called the weak Jackson inequality (see also [8]).

For linear approximation processes that satisfy Jackson- and Bernstein
type inequalities, analogous results are also achieved in Section 3.

It will be the applications that will guide the investigation and conditions
in this paper, and many applications will be given.
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2. BEST ApPROXIMATION AND SMOOTHNESS

Results of the type described in Section J. i.e., (1.8) for lj; satisfying (1.7),

are not particular to best nth degree trigonometric approximation. A
general framework under which they are valid will be described in this
section. Let X and Y be Banach spaces with Y c X. The K-functional of the
pair (X, Y) is given by

KU;t)= inf (1If-gll\+tcP(g)),
gE Y

where cP is a seminorm for which

Y = {fE X; cPU) <x j.

For {X,,} a sequence of subspace of X satisfying X" c X" + 1, we write

E,,(f) = E"U)\ = inf lIf-cpll\.
(fJ EX",

A Jackson-type inequality is given by

(2.1 )

(2.2)

E,,(f):( CK(.f; (J,,),

A Bernstein-type inequality is given by

fEX.

cp E X" c Y.

(2.3 )

(2.4 )

In fact, while in the statement of the Jackson and the Bernstein inequality,
there is no reason to use the same X, Y, or (J", we (and almost everybody
else) are interested in a matching pair, i.e., Jackson- and Bernstein-type
inequalities with the same X, Y, X n , and (JI/'

We should also remark that if we denote the best approximant of Xn to
f (or one of them) by A nl; that is,

IIAJ-fllx= inf Ilcp-fllx,
(P E X n

we have

IIAJII :( Ilfll

and

IIAnU + g)- U+ g)ll:( IIAJ-III + IIAng- gil·

Therefore, the inequality

(2.5)

for g E Y (2.6)
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can replace the Jackson inequality (2.3). This inequality is sometimes called
the Favard inequality and sometimes the Jackson inequality, and therefore,
we may call it the Jackson-Favard inequality.

To prove the theorems, it is necessary that the sequence (Jil not tend to
zero at a faster than geometric rate, i.e.,

for some c > 0 and n= I, 2, ... (2.7)

(As (J1l=0(l), O<c< 1.) The sequence (J1l=n is prevalent in applica
tions. (Most times}' is an integer but in Section 8 we have a case for which
/' is not an integer.) In fact in most works the space XII first worked with
is of about 211 dimensions and the sequence is (Jil = 2 -II;, and only later is
an adjustment made to n (or 2n + I) dimensional Xn- (Note that here we
did not specify the dimension of XII')

We follow N. Bari and S. B. Stechkin [2 J and define a class of functions
lj; which satisfy the steadiness condition which we call S (S for steady).

DEFINITION 2.1. A continuous nondecreasing function lj;(t) is of class S
if 0 = lj;(0) < lj;( t) for t > 0 and the condition

(2.8)

is satisfied.

In fact the steadiness of lj; is seen much more clearly from the following
equivalent condition (see [2J).

THEOREM A. For a nondecreasing continuous function lj;(t),
0= lj;(0) < lj;(t) for t > 0, the assumption that there exist A o, Ao > 0 such
that

for A ~ A o and
. I

Ab~
"'2

(2.9)

is equivalent to (2.8).

While in [2J the statement is somewhat different than (2.9), it actually
implies the same facts and the equivalence between (2.8) and (2.9) is given
in the proof there before a less convenient (in my opinion) equivalent
condition is stated.

It can be noted that the assumption

b (lj;t~) dt=O(lj;(b))
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already implies (2.8). Furthermore. one can note that the continuous
nondecreasing function t/J ,(t) for which 0 = t/J ,.(0) < t/J,.( t) for t > 0 satisfies

if and only if t/J,.(1 I ') == t/J(t) with t/J( t) satisfying t/J E S.

THEOREM 2.2. Suppose the Jackson inequality (2.3) and the Bernstein
inequality (2.4) are satisfied f(Jr the Banach spaces X, Y, and X" satish'ing
X" c X" + 1 eYe X, and suppose the sequence (J" satisfies (2.7) (i.e.,
(J", I;?: m,,). Then f(Jr t/J E S, the condition

and the condition

KU t)~ t/J(t)

EnCf)~ t/J((J,,)

j()r t E [0. \ ]

are equivalent. and either one oj'them implies

E"Cf) ~ KU: (J,,) (2.\0)

where no is independent off

As KU; t) is an increasing function and E"U) a decreasing sequence, we
also have the following immediate corollary of Theorem 2.2.

COROLLARY 2.3. (A) Under the conditions 0/ Theorem 2.2,

for some j implies (2.10).

(B) Under the conditions 0/ Theorem 2.2 with (J" = n '

C<2';

f()r some j implies (2.10).

Proof 0/ Corollary 2.3. To prove (A), we set KU: t)=t/J(t), and the
assumption on KU; t) implies t/J(t)ES. To prove (B), we set EnU)=t/J((Jn)
and define t/J linearly elsewhere. The assumption on En(f) now implies
t/J(t) E S. I

Prooj' 0/ Theorem 2.2. Using (2.7), we choose a subsequence of n, n,.
such that no = 1 and

for v = 1. 2, ....
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(For (JII = n ',n" = 2', and for (In = 2 '11, n, = v.) With no loss of generality
we may assume (JI = I, and therefore, c' I <(JII,~C' for V= 1. 2, .... We
now write

k

AIIJ= I (AI/)-A II , J)+Alf;
\,=-1

where

IIAnJ-fli = inf Ilcp -fll.
(;? E .-'-'!II

We apply the Bernstein inequality to the above and obtain

KU; t) = EIIJf) + t<P(AI/J)

k

~E,Jf)+Ct I c 'Ell, Jf)+Ctllfll, (2.11)
\"= I

where C = C I 2e I. Frequently the last term in (2.11) does not appear in
applications as often we have <P( cp) = 0 for cp E XI'

We now prove that KU; t) -lj;(t) implies EnU) -lj;((J,J Using Jackson's
inequality and

we have only to show EI/U);;:: Alj;((JII)' We use (2.11) to write

k

C 3 Ilj;(t) ~ KU; t) ~ EnkU)+ Ct I c 'KU, (JII, ,) + Ctllfll
v = 1

k

~EI/Jn+C(I)t I c 'lj;(e' 2)+C(I)tllfll.
\' ::.~ 2

We now use lj; E S (Definition 2.1 ), and therefore,

k

I c-\lj;(C\)~C4lj;(ek)ck

v=o

This now implies (for k ;;:: k o)

We will choose t = em with m = m(k) > k;;:: ko for which

(I) C(2)emc·k+2lj;(ek 2)<~C;Ilj;(cm),

(II) C(l)emllfll~~C3·1lj;(cm)
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and at the same time

(III)
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Im(k)-kl <N,

where N does not depend on k.
If a choice m = m(k) satisfying (I), (II), and (III) is possible, we have,

using the inequality

which is valid for 0 < a ~ 1,

Ellk(f):;:C31ljJ(ell1):;:C12K(f,em)

:;: C 1 2 em k + 1K(f, ek I):;: C 1 3 em k + lljJ( ek I)

:;: C 3 ·'ell1
k + tljJ((Jllk)

and using the same consideration as above,

for IIk<n<nk + t ,

which yields

EIl(f):;: MljJ((JII)'

Note that no is independent of f
Therefore, to complete the proof that EII(f) '" ljJ((JII) follows from

K(f, t)"'ljJ(t), we need to show that we can choose m=m(k) that satisfy
(I), (II), and (III).

To choose m - k we first choose an integer I such that

where C 3 and C(2) were given in (I). We now choose m - k so that for A o
given in (2.9)

and therefore, (III) is satisfied, and for k:;: ko, (I) follows from (2.9) with
A I = e - m + k 2 as

./, (e k 2) ( I ) I
'I' < _ e 111 + k 2 < (em + 2 k. C . C( 2) 4) 1
ljJ(e"') -..: 2 -..: 3
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The inequality (2.9) which is equivalent to t/J E S now implies el< 0= o( t/J( el<)),
k --+ CfJ, and therefore, for m ); k); ko, (II) is satisfied. We have now proved
that a choice of m(k) is possible for k ); ko.

We now prove that (2.10) follows from E,,(n~t/J(a,,) (n);no). We write

M It/J(a,,) ~ E,,(f) ~ Mt/J(a,,),

and following (2.11 ),

k

K(f; t) ~ E",(f) + Ct L e 'E",_ln + Ctlllil
\'=1

I<

~Mt/J(a",)+C(l)t L e '+It/J(a,,, ,)+Ctllfll·
\"= 1

We set t = el< 2 and recall t/J E S to obtain

K(f;el<-2)~Mt/J(el<-2)+C(2)t/J(el<2)+Cel< "l!fII

=C(3)(t/J(el< ")+el<-21Ifll).

Using the equivalent form to t/J E S in Theorem A,

k --+ x,

and therefore,

This now implies

K(f; el<) ~ C(4) t/J (e" ),

and therefore,

K(f, t) ~ C(5) t/J(t),

which completes the proof of the theorem. I

Remark 2.4. It is the existence of an inequality of weak type like (2.11)
that together with (2.3) is sufficient for the proof of Theorem 2.1 or
Theorem 2.2. A Bernstein-type inequality is the crucial tool to achieve
(2.11) but sometimes an inequality such as (2.11) can be proved without
explicit use of the corresponding Bernstein inequality. This type of situation
is given in [7, Chap. 12J (see also Section 9 below).

640 62 _~-4
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3. RATE OF ApPROXIMATIOJ\< OF LINEAR PROCESSES AND SMOOTHNESS

In this section an analogous result to that of the last section will be
achieved for linear processes of approximation. While there is a similarity
in the problem and some of the ideas, we lose monotonicity and the
Bernstein-type inequality is of somewhat different character. We first note
that the rate of convergence for a sequence of linear operators (even
standard ones) is not necessarily monotone. For a K-functional of the pair
of spaces (X, Y) given in (2.1), the Jackson inequality is given by

II AIJ - fill';; CK(j, <Tn)·

The Jackson inequality for linear processes usually follows from

IIA,Jli.I';; Mllflll'

(3.1 I

(3.2)

which means that the sequence of operators A n is uniformly bounded, and

for g E Y. (3.3 )

(Recall that C/J is a seminorm which defined Y and was used in (2.\ ).) The
inequality (3.3) is sometimes called the Jackson inequality as well, al1d
sometimes the Favard inequality. The Bernstein-type inequality is given by

(3.4 )

which assumes implicitly that AnfE Y. For linear approximation processes

for g E Y (3.5 )

is also necessary. The inequality (3.5) means that An is a uniformly
bounded sequence of operators in Y as well. The Bernstein-type inequality
here looks somewhat different from (2.4) but the similarity of the results
and applications (see later sections) will, it is hoped, convince the reader
(who is not already convinced) that the identical name for these somewhat
different inequalities is justified. In fact, the inequalities (3.4) and (2.4) are
both commonly referred to in the literature as Bernstein-type inequalities.

THEOREM 3.1. Suppose A n is a sequence of linear operators on X satislv
ing A,JE Yand the inequalities (3.1), (3.2), (3.4), and (3.5) with respect to
the pair of spaces X and Y and a sequence (Jn '" o. Then the condition

K(f; t) ~ 1jJ(t)

for t';; to implies

IIA,J-fll ~ KU~ (In)· (3.6)
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Remark. For K(f, t) satisfying
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for some C < 2/ (3.7 )

we have K(j; t) E S, and therefore (3.6).

Proolol Theorem 3.1. Using (3.1), we have only to show that

IIA,J III ?MKU; O"n)'

Combining

KU; t) ~ IIA,J III + tif>(A n /)

with (3.4) and (3.5), we obtain the common form

K(f; t) ~ IIA n I fil + [{(in I K(f a,J.

We choose t = (jO"n with some 0 < () < 1 for which

(3.8 )

(3.9)

which is possible for n? no as K(j; 1)- t/J(t) and t/J(t) E S, and therefore,
t/J(t) and K(j; t) satisfy (2.9).

We now have

and this completes the proof when we observe that (j does not depend on
n? no. I

The condition KU; t)- t/J(t) for t/J E S can be replaced by a condition on
ilA,J' III as is shown in the following theorem.

THEOREM 3.2. Suppose A II satL~lv (3.2), (3.3), (3.4), and (3.5), III E S (see
Definition 2.1) and an + I > C(Jn for some 0 < c < 1. Then

IIAnI III - t/J(an)

implies (3.6).

Prool We have to show only that

K(f (In)~Mt/J(an)

(3.10)
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and in fact it is sufficient to prove it for n;? N. Using (3.4) and (3.5), we
write

KC/; O"n) ~ Ilf- Ad!1 + O"ncP(O"d)

~ Ilf-Adil +LO"n(O"k lliI-gll +cP(g))

~ Ilf- Adll + LO"nO" k IKC/; O"d·

We now choose a subsequence of n, n - I..... I. n l > n1 > ... > nio such
that

C im(J,,~(Jn,<(Jnc (i+l)f11,

where c . m ;? A 6and 21> L with (' of (2.7) (or the statement of the present
Theorem) A o of (2.9) and L given above. Obviously {n;} is a finite
sequence, and moreover, we choose in so that O"n(' (io + I) m ~ ~ < O"n(' (io + 1) m

unless we exhausted the sequence n, ..., 1 before that.
Using

and

we write

'0

K(.f, O"n)~ Ilf -AnJII + L LiO"nO"n, Illf-AnJII + Li°O"nO"no l cP(Anof)
1= I

'0

~Mlt/!(O"nl)+MI L LiO"nO"n, I t/!(O"n) + M1V°O"nO"n'olt/!(O"ni)
i= 1

'0

~ M 2 t/!(O"n) + M 2 L (L/2 Irt/!(O",J + M 2 t/!(0",J
i=O

4. WEAK JACKSON INEQUALITY

In Section 2, we assumed a Jackson-type inequality with respect to the
K-functional. In many cases of theorems about best approximation, such
an inequality is satisfied and the K-functional is equivalent to a satisfactory
measure of smoothness. However, recently while investigating weighted
algebraic polynomial approximation on [ -I, I] and on R (with different
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weights of course), two natural (and indispensable for some weights)
measures of smoothness emerged (see [7J) which were not equivalent to
the corresponding K-functional and did not satisfy the Jackson inequality.
In [7J, such measures of smoothness were named main-part moduli of
smoothness and many of their properties were proved. We denote
main-part moduli of smoothness by Q'(f t). The Jackson inequality was
replaced by

E,,(f) ~ c\ run (Q'(f, t)lt) dt
""0

(4.1 )

which we call the weak Jackson inequality. We further use a form of weak
type estimate given by

(4.2)

for all t and a subsequence of n{nv} for which U ", ~ f3' for some 0 < 13 < 1.
Recall that (2.11), which corresponds to (4.2), was instrumental in the
proof of Theorem 2.2. In the applications, both E,,(f) and Q'(f, t) will
have other subscripts to indicate the space X in which f lives, the weight
in question, and perhaps the sequence of subspaces X". Here, we derive
from (4.1) and (4.2) a somewhat weaker result than that derived from (2.3)
and (2.11) in Theorem 2.2 using the same methods and steps of the proof
of that theorem.

DEFINITION 4.1. The increasing function ljJ(t) belongs to class S* if
ljJ E S, that is,

and in addition

for 0 < t ~ to'

II (ljJ(T)/T) dT ~ ljJ(t)
o

(4.3 )

(4.4 )

THEOREM 4.2. Suppose for the space X, a sequence of subspaces X"'
X"CX"+I' and a sequence U"+I>CU", a relation between Qr(f,t) and
E,,(f) is given by (4.1) and (4.2), the latter for some subsequence ofn, nkfor
'which u", ~ 13k. Then for ljJ(t) E S*

Qr(f, t) ~ ljJ(t') (4.5 )
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il and only il

Z. DITZIAl'<

EIIU)~if;(a;J (4.6)

Remark 4.3. We may restate Theorem 4.2 as follows: Under the
assumptions of Theorem 4.2, either (4.5) or (4.6) implies

EIIU) ~ Q'(/, all)' (4.7)

Prool To prove that (4.5) implies (4.6) we first observe that (4.4)
implies

1" (if;(r'l)/r) dr ~ if;(t'l)
oil

(4.8)

for all positive:/.. We then use (4.1), (4.2), (4.5), and (4.8) with y.=r to

obtain

We can now follow the technique of the corresponding part of Theorem 2.2
to obtain

EII,cll ~ if;(a;'k)'

Hence, using the conditions (4.3) and monotonicity of EIIU) and if;(t), we
have

The proof of the implication

is similar to that used in Theorem 2.2 and will be omitted. Using (4.1) and
monotonicity of Qr(J, f), we have

EnU) ~ M 3 fa" (Qr(f; t)/f) df ~ M 4 Q r(f; an)
-0

and therefore,
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5. TRIGONOMETRIC POLYNOMIAL ApPROXIMATION
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In this section, we deal with trigonometric polynomial approximation in
a Banach space X of functions or distributions on T (the "circle" [ - n, n J).
The translation or shift operator S;, on X is given by

or by

SIJ(X) =f(x + h) if f is a function

(S;,f g> = U; S_;, g),

where g E //' if f E //,'. (Recall that :/" is the space of tempered distribution
dual to the space of test functions //'.) We further assume that S;, is an
isometry and that either S;, is weakly continuous, that is,

(SIJ-f;g>--O, as h -- 0, for all g E x* (dual to X), (5.1 )

or that S;, is weakly* continuous which means that X = B* and

(g,SIJ-f>--O as h -- 0, for all g E B. (5.2)

(Of course, S;, is strongly continuous implies that S;, is weakly continuous.)
Under these assumptions, one has the Jackson inequality

E,;cnx:(: Cwr(f n I lx, (5.3 )

where E,;cnx and w'(f; t) are given by (1.2) and (1.3) and C is inde
pendent of n,fand X (see [5, 6J, for example).

Moreover, for the above situation Tn E X implies T;, E X and hence,
T~:' E X and the Bernstein inequality,

II T~:III x:(: nrll Til 11.\

is satisfied (see [1, pp. 140-144; 5; 6J).
The K-functional is given by

for all Tn E .Y;" (5.4 )

K,(f;tr)x= inf (Ilf-gllx+trllglrlllx),
KEY

(5.5 )

where Y is the collection of g such that girl, taken in the distributional
sense, satisfies girl E X. Obviously, we can choose g E Y such that
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and therefore, the conditions of Theorem 3.1 are valid. Following the
standard proof for C( T) or L 1'( T), one also has

(5.7)

THEOREM 5.1. Suppose X is a space offunctions or distributions on Tfor
which a shift is an isometry satisfying (5.1) or (5.2) and lj; E S. Then the
conditions

and

E"U)x ~ lj;( lin')

are equivalent, and either (5.8) or (5.9) implies

E"U)x ~ wr(f lin )x·

(5.8)

(5.9)

Proof This theorem is an immediate corollary of Theorem 2.1. To
satisfy the conditions of Theorem 2.1, we recall (5.3) and (5.4), replace t by
t', and observe that

Kr(f t')x ~ wr(j; t)x

which follows from (5.6) and (5.7). I

6. ALGEBRAIC POLYNOMIAL ApPROXIMAnON ON [ - I, I]

In [7, Chap. 7], the rate of approximation of algebraic polynomials was
discussed for LI'[ -1, 1], I ~ p ~ eX). The K-functional

(
/~~2 ('

cp x) = vi 1- x 6.1 )

was shown to be equivalent to a modulus of smoothness

cp(x)=jl-x 2 (6.2)

(with the understanding that L1 ~f= 0 if (x- I1r12, x + I1r12) ct- [- 1, 1]). As
the Jackson inequality
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[3, p. 79) and the Bernstein inequality
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(6.4 )

(see [7, p. 107J with H' = 1) were already proved, we have the following
theorem as a corollary.

THEOREM 6.1. For lj; E S, w~p(f, t)" given by (6.2), and EnCfJi" given by
(6.3), the conditions

and

are equivalent.

Remark. For some particular functions lj;( t) such as t' or {'(log t )IJ it
was proved in [7J that w~(f, t)" ~ lj;(tr) implies E"(.f),, ~ lj;(n r).

7. BEST WEIGHTED ALGEBRAIC POLYNOMIAL ApPROXIMATION IN L p [ -1, 1J

The rate of best weighted algebraic polynomial approximation in L"
given by

E"Ul, ,p == inf II w(.f - P) II Lrf I, I]
PE;,fln

(7.1 )

was investigated in [7, Chap. 8J for weights wEJ;, where J; includes the
Jacobi weights w(x)=(l-xFl(l+xF' if li>-llp. For estimating
E"(.f)",,,, the main-part moduli Q~(.f, t)."" given by (for qJ(x)=Jl-x2

)

Q~(f,t)",,,= sup 1111L1~<pfIILpf-l+2r2h2,1-2r'h2J (7.2)
O<h~t

were indispensable. The weak Jackson inequality

E"(.f)",,,";;Cf
1i

" (Q~(f, t)lt)dt
o

was proved in [7, p. 94]. Therefore, we have the following result

(7.3 )

THEOREM 7.1. Suppose E"(.f).",,, and Q~(f, t lw." are given by (7.1) and

(7.2), respectively, w(x) = (1 + X)"l (1 - x)'" with Yi> -lip, qJ(x) == J1=?,
and lj; E S* (see Definition 4.1). Then
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and

are equivalent.
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Remark 7.2. Theorem 7.1 is valid for a somewhat more general class of
weights called Jf~ in [7].

Prool We recall that for H'(x)=(I+x)"(I~xF', y»-I(p,
1 '.( P '.( x, (and actually for the wider class J; which includes for instance
H'(x) = (I + xF' (1 - xF' (Ilog( 1 + x)l/i, Ilog( 1 - x)I/I" ';') > - lip) one has

II H'mr plrl
'r Lpl 1.11'.( CnrlllrPII,p! 1.1 J' P E .1~, (7.4)

(see [7, p. 107J). We can now follow the proof of Theorem 8.2.1 of [7,
p. 96 J to obtain

II wA ;"pflll.p[ I t 2h'r'. I 2h'r' I

'.(M(IIH'(f-P21)IIL
1
,! 1.11+h'IIH'({irp~)IIII'[ 1.11) (7.5)

from which one can easily deduce

Q~pU; t)"p '.( M I IEAtL,p + t' t 2vr E 2,U)"p.l. (7.6)L \' = 0 J
The formula (7.6) is the weak-type result (4.2) ({3 = 1/2) for our case and
hence, we can follow the result of Section 4 to complete the proof. I

8. WEIGHTED POLYNOMIAL ApPROXIMATION IN Lp(R)

We will apply here the result of Section 4 to weighted polynomial
approximation with Freud's weight

W;(x):=exp(-Ixl'), 1.>1.

The rate of best polynomial approximation is given by

(8.1 )

We note that more general situations than W; were investigated for which
analogous results would be achieved with minor but messy modifications of
the results in Section 4. The related main-part moduli are given by

Qr(j; t)w;.p:= sup IIW,L1;,fIILp [ h'" IJh'" III' (8.2)
O<h~f
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In [7, Chap. 11], the weak Jackson inequality
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",nll ));',

E"U)w;.,,~CI (Q'(ft)w;.,,/l)dt+Ce ,,,' IlillW;JII" (8.3)
vO

was proved.
The Bernstein inequality (see for instance [7, p. 185])

PE'~, (8.4 )

will complete the necessary prerequisites for a result of the type given in
Section 4 and hence, we can derive the following theorem.

THEOREM 8.1. Suppose Q'(f; I)w;.P and EnCn1'r;." are given by (8.2) and
(8.1) where Wjx)=exp( IxY), ;.> 1, and 1~p~x" Then for lj; S*, the
conditions

and

are equivalent.

Remark 8.2. In [7, Chap. 11], theconceptsK,(f: t')u;.pand(J):U: t)w;.!'
were also discussed. If these concepts rather than Q'(f; t) W;." were used in
Theorem 8.1, we could relax the condition on lj; and assume only lj; E S as
we could apply Theorem 2.2 rather than 4.2.

We also should remark that for some particular functions lj;(t), the
implication Q'(f; t)w;.!' .... lj;(t r

) implies E"U)w;.p.... lj;(n -r(l I(i/Il) \vas
shown in [7].

9. MULTIVARIATE BEST ApPROXIMATION

On the domain S c Rd
, we can define best nth degree algebraic polyno

mial approximation by

E,,(f)Lp(S) = inf{ III - PH; P a polynomial of total degree n}. (9.1 )

We recall that a polytope is the convex hull of finitely many points and a
simple polytope S c R d is a polytope with an interior point for which any
one of its vertices is connected to other vertices by exactly d edges. For a
simple polytope, the moduli of smoothness w\.(f, I)" and (7J~\·U, t)" were
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defined in [7, p. 202]. As a corollary of results in [7J and in Section 2, we
obtain the following theorem.

THEOREM 9.1. Suppose S is a simple polytope, S c Rd
, I ~ p ~ Xi,

w~U; t)p, and w~U; t)p are as defined in [7, p. 202J and if; E S. Then

EIlU)/pISI ~ if; ( lin'),

w:,(/ t)p ~ if;(t'),

and

are equivalent.

Remark 9.2. When discussing (0:,(/ t)p and w:,(f tJp , we should recall
the definitions of these measures of smoothness. For I ~ P < ex

w~u; t)p= I AI . . r' 1L1;'hc7\(c. \ + ;d:I(x+),e)IP d).dm,,(X)}iiP. (9.2)
(E~d I \EC-loi:l

0< 1I:s:!

where V d
. i is the set of unit vectors in Rd

, me is the (m - I ) dimensional
Lebesgue measure on e.l, and

ds(e,x)=( min d(x,x+).e))( max d(x+Aie,x+)'2e)). (9.3)
x- + ..I.e f/: ,)' \' + ;.( E 5;

Similarly, w~U; tL: is defined. The modulus w~·U; tJp is defined using (2.9)
where instead of taking the supremum for all e E V d

- i, we take it only in
directions parallel to the edges of the simplex.

Proof The Jackson inequality

EnU)LpiS) ~ M[w:,(f I/n)p + n '1IIIIpJ

~ M[(o:,U; I/n)p + n" '1IIIIpJ (9.4 )

is given in [7, (12.2.3) J and the weak-type result

w~U, t)p ~ w:,U; t)p

~ c LE2IU)/pIS) + t' ,to 2
V

'E2,U)LpIS) + t'11I11 LPislj (9.5)

is achieved as a step in the proof of (12.2.3) in [7 J (see [7, p. 206 J used
without the restriction 2/ < lit < 2/+ I).

We use (9.5) and (9.4) to obtain our result. We recall that we may deal
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with the moduli of smoothness rather than the K-functional as was done in
Section 4. I

Remark 9.3. The Bernstein inequality of the approximation process by
best algebraic polynomials on a simple polytope can be given explicitly but
the inequality (9.5) is much simpler and is what we need here.

For a Banach function space X on T d satisfying conditions (5.1) or (5.2),
we define

EnCll\= inf Ilf-rll x,
T E .eYn

(9.6)

where Y" is the set of trigonometric polynomials of degree n In each
direction. We define

wr(f, t)\= sup 11,1;/11"
0< 1'-1"; t

where

,1;f(u) = ,1;- 1(f(u + (vI2)) - f(u - (vI2))),

(9.7)

(9.8)

We now have the following generalization of Theorem 5.1.

THEOREM 9.4. Suppose X is a Banach space o/functions or distributions
on T d satisf.Ying (5.1 ) or (5.2) and if; E S. Then

and

are equivalentfor E,,(f) x and wr(.f; t) x given by (9.6) and (9.7), respectively.

Proof For X = L y ( T d
), we have

and

E,,(f)x~Cw r((, Iln)x (9.9)

k

wr(.f; tlx~2r EAllx+Ct' L 2vrE 2,(f)\· (9.10)
\'=0

While we could not find the statements (9.9) and (9.10), they can be shown
following the more complicated case proved in [7, Chap. 12], and
probably are known (at least for fELr(T d

)). In [10, p.273, 350], much
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more complicated formulas appear which cannot be used here. From (9.9)
and (9.10) for X = L, (T d

), we get these formulas for X satisfying (5.1 ) or
(5.2) using the same steps used in [5, 6]. We now follow earlier sections to
obtain our theorem from (9.9) and (9.10). I

10. SOME LINEAR ApPROXIMATION

The theorem in Section 3 was tailor-made to fit many linear approxima
tion processes.

For example, for convolution approximation processes we have:

THEOREM 10.1. Supposc thc scqucncc G,,(x) of jimctions on R or T
salis/.i-

(a)

(b) jiir 0 < i < 1',

(c)

(d)

(e)

"

j Gn(t) dt = I,

f le;,(t)1 dt = O((T" I)

for (Tn = o( I) satisf.}'ing (Tn + I ? ('(Tn for somc c > o.

Thcn fiir t/J E Sand B a Banach space off/mctions on R or T .liJr which
translation is a continuous isometr\'

and

are equivalent, and each imply

Proof We define

en.At) =: e".r 1* e,,(t), G".o(t)=:f. (10.1)
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Assumption (a) now implies

337

and
k

IIGnJ *f-fIIB~ L: IIG",,* (Gn*f flilB
\' ()

~ (t + At + ". M'" I )IIG" *(- )11 B' (10.3)

The assumptions (b), (c), and (d) imply for ,RE B where ,Rlrl the rth
strong derivative of,R in B satisfies girl E B,

and therefore,

The assumption (e) implies

II (~\ G" *fl B ~ Clan Illfll B'

and therefore, for k ~ r,

(10,5)

For g E Bf the subspace for which the strong r derivative of g in B exists
and cP(g)= Ilg1flll s < ex" we have

Using Theorem 3,1, we have for k ~ r

Using (10.3), we have

We also have

(10,6)

!I Gil *f-fIIB~ IIG" * (f G",r * fllIB+ IIG",r+ 1* f -fiIB
~ MIIG"J *( -fIIB+ IIG",r+ 1* f -fll s, (10.7)
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We now deduce from IIGn*l-IliB~t/J((<) using (10.3) and (10.7) that

A:,l}J(lT;ll~max(IIGnJ*I-IIIH'iIG"JII *I-IIIB)~Alt/J((J;,),

Now G,~ which is equal to GnJ or GnJ t I' whichever achieves the maxi
mum above, satisfies the conditions of Theorem 3.2 and implies

In [7, Chap. 9], combinations of Bernstein-type operators Ln.Jll were
discussed and related to the moduli w~(j; t)" where cp depended on the
particular approximation process. (For instance for combinations of
Bernstein polynomials, cp(x)2=x(l-x).) We use the inequality (9.3.1) of
[7] for the Jackson inequality with w~:U; t)" taking the place of KU; 1

2
')"

in (3.1). We use (9.3.2) of [7J for the crucial inequality (3.9) (again with
())~U; I)" standing for KU; t 2

,),,). With the above, we now have the
following theorem.

THEOREM 10.2. For LnJ(f) given in [7, Theorem 9.3.2] and t/J(t) E S

and

are equivalent.

IILnJ-III,,~t/J(n ')

(10.8)

(10.9)

In [7, Corollary 9.3.8], it was shown that a somewhat stronger condition
than (10.8) implies (10.9).

For the reader who is not familiar with combinations of exponential type
operators as given in [7, Chap. 9J, we give the following special case of
Theorem 10.2.

COROLLARY 10.3. For t/J E S the conditions

KqJ(f, (4 )c == inf (111- gllC[o. I] + 1411x2(1 - .xY g( 41 11 c[o. I]) ~ t/J(t4) (10.10)
R

and

112B2n I - B,J - III ero I 1~ t/J(n 2), (10.11 )
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B"f(x)

are equivalent.

Exponential type operators include other operators like Baskakov,
Szasz-Mirakjan, Gauss-Weierstrass, and Post-Widder operators. L".rCll
of Theorem 10.2 include also modification following Kantorovich to
accommodate L" spaces as well as combinations that accommodate any
fixed degree of smoothness.
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