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1. INTRODUCTION

To introduce the problem dealt with in this paper, a description of the
situation in the special but very important approximation process, namely,
the best nth degree trigonometric approximation in C(7T), will be given. We
denote

E:f(f )\E lnf Mf‘ Tn“)&" (11)

T,e. 7,

where X is a space of functions (or distributions) on T and .7, is the space
of trigonometric polynomials of degree n. The Jackson inequality

EX(f)e<Co(fin ")y, (1.2)
where
o (fit)yy= sup 4511y,
O« h<y (13)
.. A h . h
afx)=ay Hfx+3) S>3
(A9 f(x)= f(x)) and the Bernstein inequality
1T Ny <0\ Ty for T,e7, (1.4)

are valid for many spaces of functions on 7. (In particular (1.2} and (1.4)
are satisfied for spaces of functions on 7 for which the translation T(7) is
continuous in 7 and || 7(¢)|| = 1.) These inequalities imply for O <a <r,

W (f. 1)y =00") = EX(/)y=0(n 7). (1.5)
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For the sake of brevity, we will write w'(f. 1), E¥(f) and | /|| instead of
' (fi Dy, EX()y, and | f1| y when X will be understood from the context.

At first, one might think that in the situation above, i.e., when o’{f, t) =
O(r*), we will have '(f, 1/n)~ EX(f), which implies the exact converse of
(1.2). Unfortunately, this turns out to be false, as can be shown by modify-
ing an example given by Boman [3] or using the classical proof (by
constructive contradiction) of the Banach-Steinhaus theorem as done by
Dickmeis, Nessel, and Wickeren in many articles (see, for example, [4, 97).
A question of this type was posed by Stechkin in a conference on construc-
tive function theory, 1977, in Blagoevgrad, Bulgaria. Stechkin asked if for
feC(T) which does not belong C”(7T) there exists an r such that
W'(f, 1/n) < CEX¥(f). That question was answered negatively by Boman
[3]. It seems natural to look at the same question in a positive manner
and ask if there is a simple condition on the behaviour of w(f, 1) or of
EX(f) that will imply for some r,

o' (fo 1)~ EX(f). (1.6)

In fact this type of question was answered for trigonometric polynomials
on C(T) and probably other spaces by several Russian mathematicians,
notably N. K. Bari and S. B. Stechkin [2]. In [2] (see Lemma 7, p. 513} it
was shown that for a nondecreasing continuous function in [0, 7], ¥,
satisfying ¥,(0) =0 and ,(r) #0 for 1 # 0 satisfies the condition

) VA G o), (1.7)
U
one has
EX(f)~y(lim)<=o'(f 1)~ yl1), (1.8)

and therefore, (1.6) is satisfied.

A result of this type for general non-linear processes of best approxima-
tion that possess Jackson- and Bernstein-type inequalities will be shown.
Moreover, analogous results will be achieved relating the best weighted
algebraic polynomial approximation on [ —1,1] or R to moduli that do
not satisfy the Jackson inequality but a weaker inequality that should
perhaps be called the weak Jackson inequality (see also [8]).

For linear approximation processes that satisfy Jackson- and Bernstein-
type inequalities, analogous results are also achieved in Section 3.

It will be the applications that will guide the investigation and conditions
in this paper, and many applications will be given.
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2. BEST APPROXIMATION AND SMOOTHNESS

Results of the type described in Section 1, i.e., (1.8) for ¥ satisfying (1.7),
are not particular to best nth degree tr1gonometr1c approximation. A
general framework under which they are valid will be described in this
section. Let X and Y be Banach spaces with ¥ <= X. The K-functional of the
pair (X, Y) is given by

K(f 1= :gf If—gly+tD(g)), (2.1)

where @ is a seminorm for which
={feX,d(f)<x}.
For {X,} a sequence of subspace of X satisfying X, < X, , we write

E()y=E(f)y= lnf A=l (2.2)

A Jackson-type inequality is given by
E(f)Y<CK(f,0,), [eX. (2.3)
A Bernstein-type inequality is given by
()< Cio, Mol s peX,cY. (2.4)

In fact, while in the statement of the Jackson and the Bernstein inequality,
there is no reason to use the same X, Y, or g,, we (and almost everybody
else) are interested in a matching pair, i.e., Jackson- and Bernstein-type
inequalities with the same X, Y, X, and g,,.

We should also remark that if we denote the best approximant of X, to
f (or one of them) by A4, f, that is,

HA,,f—fHXEwigi lo = f1x (2.5)

we have

L4, f1<Ifl

and
l4,(f+g) —(f+gl<lA,.f—fl+]4,8— gl
Therefore, the inequality

E(g)<Cyo,9(g) for geY (2.6)
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can replace the Jackson inequality (2.3). This inequality is sometimes called
the Favard inequality and sometimes the Jackson inequality, and therefore,
we may call it the Jackson-Favard inequality.

To prove the theorems, it is necessary that the sequence o, not tend to
zero at a faster than geometric rate, i.e.,

Opiy 20, for some ¢>0 and n=1,2,.. (2.7)

(As 6,=0(1), 0<c<1.) The sequence o,=n 7 is prevalent in applica-
tions. (Most times y is an integer but in Section § we have a case for which
¥ is not an integer.) In fact in most works the space X, first worked with
is of about 2" dimensions and the sequence is ¢, =2"", and only later is
an adjustment made to n (or 2n+ 1) dimensional X,. (Note that here we
did not specify the dimension of X ,.)

We follow N. Bari and S. B. Stechkin [2] and define a class of functions
¥ which satisfy the steadiness condition which we call S (S for steady).

DErFvITION 2.1, A continuous nondecreasing function ¥(¢) is of class .S
if 0=4y(0)< () for >0 and the condition

5 [' 'pt(j) d ~(3) (2.8)

v o
is satisfied.
In fact the steadiness of i is seen much more clearly from the following

equivalent condition (see [2]).

THEOREM A. For a  nondecreasing  continuous  function (1),
0=y (0)<y(t) for t>0, the assumption that there exist Ay, Ay>0 such
that

A for A2A, and  Ad<

is equivalent to (2.8).

While in [2] the statement is somewhat different than (2.9), it actually
implies the same facts and the equivalence between (2.8) and (2.9) is given
in the proof there before a less convenient (in my opinion) equivalent
condition is stated.

It can be noted that the assumption

5[ B ar=owen

t
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already implies (2.8). Furthermore, one can note that the continuous
nondecreasing function ,(¢) for which 0= (0} <y ,(¢) for ¢ > 0 satisfies

.1 I,Z/,-(f)

o ,l(, [r+ 1

di ~ ()

if and only if W (1" )= (1) with y(r) satisfying € S.

THEOREM 2.2.  Suppose the Jackson inequality (2.3} and the Bernstein
inequality (2.4) are satisfied for the Banach spaces X, Y, and X, satisfving
X, cX,,,cYcX, and suppose the sequence o, satisfies (2.7) (ie.
6, ,1=co,). Then for Y€ S, the condition

K(f.o)~w(t)  for 1e[0.1]

and the condition
E(fY~yla,)  for nzn,

are equivalent, and either one of them implies
E(fYy~K(f.0,) for nz=zn,, (2.10)
where ny is independent of f.

As K(f, t) is an increasing function and £,( /) a decreasing sequence, we
also have the following immediate corollary of Theorem 2.2.

COROLLARY 2.3. (A) Under the conditions of Theorem 2.2,
K(f20)<CK(f, 1), C<2
Jor some j implies (2.10).
(B} Under the conditions of Theorem 2.2 with ¢, =n ",
E(NSCE,(f).  C<2"
Jfor some j implies (2.10).

Proof of Corollary 2.3. To prove (A), we set K(f, t)=y(z), and the
assumption on K(f, t) implies y(¢)e S. To prove (B), we set E,(f)=y/(a,)
and define ¢ linearly elsewhere. The assumption on E,(f) now implies

y(r)es. |

Proof of Theorem 2.2. Using (2.7), we choose a subsequence of u, n,,
such that n,=1 and

¢ loy<a, <c'o, for v=1,2,...
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(Foro,=n % n,=2' and for g, =2 " n,=v.) With no loss of generality
we may assume o, =1, and therefore, " '<g, <¢' for v=1,2,... We
now write

k
Am\‘/‘: Z (An\‘.f‘ﬁAn\ 1/)+A1f*

where

1A, /= /= inf Jo— /.

peXy,
We apply the Bernstein inequality to the above and obtain

K(f.)=E, () +1D(A, [)

k
SE )+ Ct ) ¢ "E, (N +CHfl, (2.11)
v=1

where C=C,2c . Frequently the last term in (2.11) does not appear in
applications as often we have @(p)=0 for pe X,.

We now prove that K(f. t) ~y(t) implies E,( )~ y/(a,). Using Jackson’s
inequality and

CIW <KL < Cayln),

we have only to show E,(f)= A¥(s,). We use (2.11) to write

.
C,"WISK(LODSE(N)+Ct Y ¢ *K(f.a, )+ CHlf]

k
SE(f)+CYyt Y e Yl )+ ) f].

We now use ¢ € S (Definition 2.1), and therefore,

k
2T S Ca(Fy e

v =0
This now implies (for k = k)
Cy () SEL(N)+CQ2) e ¥ =)+ () tlif].
We will choose ¢ = ¢™ with m =m(k) >k = k, for which
(I CQ2)eme K2t ) <3C (™),
(In) CL) ™I f I <5C5 i)
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and at the same time
(IT1) |m(k)—k| <N,

where N does not depend on k.
If a choice m=m(k) satisfying (1), (I1), and (I11) is possible, we have,
using the inequality

K(/, at)<aK(f. 1)
which is valid for 0 <a <1,
E,(f)2C3 (e =2 C K )
2(’5{2(,»1 k+1K(4ﬁ('k l)z(v:{ﬁ(,m k+l¢/((,k ])

2 (‘3 3(,m k o+ Il//(O',,k)

for k=2 k,. We now use for n,<n<n, |, k=k,
E(f)ZE, (f)=CYo,),
and using the same consideration as above,
Y(o,)=CYla,) for n,<n<n,,,,
which yields
E.(f)=My(g,), >Ry

Note that n, is independent of f.

Therefore, to complete the proof that E,(f)~w(a,) follows from
K(f, t)~ (1), we need to show that we can choose m = m(k) that satisfy
(I), (II), and (III).

To choose m — k we first choose an integer / such that

2 <yt

where C, and C(2) were given in (I). We now choose m — & so that for 4,
given in (2.9)

5

! ko2 I+ 1
A()SC m+ <A0+ ,

and therefore, (111) is satisfied, and for k > k,, (1) follows from (2.9) with
AI:C\mA»k 235

k-2 1 ! 5 3
l//(( )g(_‘> ¢ m+k'~<((-'”*~ AC}C(2)4) 1'
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The inequality (2.9) which is equivalent to ¥ € S now implies ¢* = o(y(c*)),
k — o0, and therefore, for m > k > k,, (I1) is satisfied. We have now proved
that a choice of m(k) is possible for k = k.

We now prove that (2.10) follows from E,(f)~¥(o,) (n>n,). We write

M WYlo, )< ELf)<M(o,),

and following (2.11),

.
K(fLO<E, (f)+Ct Y ¢ “E, (/)+Ctfl

v=1

k
SMy(o, )+ C(1)r 3 ¢ “"N(a, )+Cr)fl.
vo=1

We set 1= c¢* 7 and recall € S o obtain

K(f, ) SMY (" =)+ C2)y(c 2+ Cet S|
=CE)(e* )+ 21D

Using the cquivalent form to i € S in Theorem A,

and therefore,
T MY,
This now implies
K(f, ¢*) < C(4) y(ct),
and therefore,
K(f. )< CS)y(1),

which completes the proof of the theorem. ||

Remark 2.4. 1t is the existence of an inequality of weak type like (2.11)
that together with (2.3) is sufficient for the proof of Theorem 2.1 or
Theorem 2.2. A Bernstein-type inequality is the crucial tool to achieve
(2.11) but sometimes an inequality such as (2.11) can be proved without
explicit use of the corresponding Bernstein inequality. This type of situation
is given in [7, Chap. 12] (see also Section 9 below).

640 62 -4
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3. RATE OF APPROXIMATION OF LINEAR PROCESSES AND SMOOTHNESS

In this section an analogous result to that of the last section will be
achieved for linear processes of approximation. While there is a similarity
in the problem and some of the ideas, we lose monotonicity and the
Bernstein-type inequality is of somewhat different character. We first note
that the rate of convergence for a sequence of linear operators (even
standard ones} is not necessarily monotone. For a K-functional of the pair
of spaces (X, Y) given in (2.1). the Jackson inequality is given by

A4,/ =11y < CK(f.a,). (3.0

The Jackson inequality for linear processes usually follows from
[A,f < MIS (3.2)
which means that the sequence of operators A, is uniformly bounded, and
|A,g— ¢liy<Co,P(g) for geV. (3.3)

(Recall that @ is a seminorm which defined Y and was used in (2.1).) The
inequality (3.3) is sometimes called the Jackson inequality as well, and
sometimes the Favard inequality. The Bernstein-type inequality is given by

P4, 1)< Cio, ISy (3.4)
which assumes implicitly that 4, /e Y. For linear approximation processes
P(A,8)<C,P(g)  for ge¥ (3.5)

is also necessary. The inequality (3.5) means that A4, is a uniformly
bounded sequence of operators in Y as well. The Bernstein-type inequality
here looks somewhat different from (2.4) but the similarity of the results
and applications (see later sections) will, it is hoped, convince the reader
(who is not already convinced) that the identical name for these somewhat
different inequalities is justified. In fact, the inequalities (3.4) and (2.4) are
both commonly referred to in the literature as Bernstein-type inequalities.

THEOREM 3.1.  Suppose A, is a sequence of linear operators on X satisfy-
ing A, f €Y and the inequalities (3.1), (3.2), (3.4), and (3.5) with respect to
the pair of spaces X and Y and a sequence ¢, 0. Then the condition

K(f.)~ylr)y  for yeS
for t <ty implies
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Remark. For K(f. 1) satisfying
K(£2'"ty< CK( S, 1), forsome C<2’ (3.7)
we have K(f, 1}e S, and therefore (3.6).
Proof of Theorem 3.1. Using (3.1), we have only to show that
14, f—f1=2MK(f 0,
Combining
KL< A S =TI +1®(A, 1) (3.8)
with (3.4) and (3.5), we obtain the common form

K<,/ /I + Lo, K(f.0,). (3.9)

We choose 1= dg, with some 0< d < 1 for which

Lic, 'K(f, 0,)<3iK(f. 1)

which is possible for n=zn, as K(f, t}~(r) and y(r}e S, and therefore,
w(t) and K(f, 1) satisfy (2.9).
We now have

K(f.0,)

[\ R

o] .
and this completes the proof when we observe that § does not depend on
nzng |

The condition K{f, £} ~ {1} for ¢y € § can be replaced by a condition on
14, f— 1 as is shown in the following theorem.

THEOREM 3.2.  Suppose A, satisfy (3.2), (3.3), (3.4), and (3.5), yr & § (see
Definition 2.1) and o,,, | > ca, for some O <c¢ < 1. Then

WA, f—fll~ylo,) (3.10)
implies (3.6).

Proof. We have to show only that

K(f. 0,}<My(o,)
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and in fact it is sufficient to prove it for n > N. Using (3.4) and (3.5), we
write

K(fio)<If—Af| +0,Pla )
<|f=A Sl + Lo(o, ' f— gl + P(g))
<N f—Acfl + Loy, KU, o).
We now choose a subsequence of n, n—1, .., 1, n;>n,> --- >n, such
that

im

N . i+ ym
[é O’,,<O’,,’<O',,L s

where ¢ "> AL and 2'> L with ¢ of (2.7) (or the statement of the present
Theorem) A, of (2.9) and L given above. Obviously {n,} is a finite
sequence, and moreover, we choose i, so that g,¢c """ << g ¢ 0F 2
unless we exhausted the sequence #, ..., | before that.

Using
I f=A Sl <M ¥(o,)
and
B4, /)< CIf1I< My(o,),
we write

iy
K(f; U!I)S Hf_Anlf” + Z Llanan, le_An,fH +L'00',1O'n“] (D(Ano.f)

i=1

1
<SM(o,)+M, ). Lo,o, ' ¥(o,)+ M L%,0, Y(a,)
i=1

0

SMyylo,)+ M, Z (L/2) Ylo,)+ My(a,)

i=0

<1‘43#/(0"1)' I

4. WEAK JACKSON INEQUALITY

In Section 2, we assumed a Jackson-type inequality with respect to the
K-functional. In many cases of theorems about best approximation, such
an inequality is satisfied and the K-functional is equivalent to a satisfactory
measure of smoothness. However, recently while investigating weighted
algebraic polynomial approximation on [ —1, 1] and on R (with different
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weights of course), two natural (and indispensable for some weights)
measures of smoothness emerged (see [7]) which were not equivalent to
the corresponding K-functional and did not satisfy the Jackson inequality.
In [7], such measures of smoothness were named main-part moduli of
smoothness and many of their properties were proved. We denote
main-part moduli of smoothness by Q'(f, t). The Jackson inequality was
replaced by

ELN)<Cy (@ fs ) di (4.1)

Y0

which we call the weak Jackson inequality. We further use a form of weak-
type estimate given by

k
Q(f, 1)<, <Enk(f) +1 Y 0, Em(.f)) (4.2)
v=0

for all ¢ and a subsequence of n{n,} for which ¢, ~ " for some 0 < f < 1.
Recall that (2.11), which corresponds to (4.2), was instrumental in the
proof of Theorem 2.2. In the applications, both E,(f) and Q'(f, t) will
have other subscripts to indicate the space X in which f lives, the weight
in question, and perhaps the sequence of subspaces X,. Here, we derive
from (4.1) and (4.2) a somewhat weaker result than that derived from (2.3)
and (2.11) in Theorem 2.2 using the same methods and steps of the proof
of that theorem.

DrerFNITION 4.1. The increasing function (1) belongs to class S* if
Y € S, that is,

p jl ‘l’“j)duw(a) (4.3)
8 u
and in addition
j (W(x)/0) du~ (1) (4.4)

for 0<r<1y,.

THEOREM 4.2. Suppose for the space X, a sequence of subspaces X,,
X,=X,.,,. and a sequence d, ,>ca,, a relation between Q'(f, 1) and
E (f) is given by (4.1) and (4.2), the latter for some subsequence of n, n, for
which o, ~ B*. Then for y(1)e S*

Qf 1) ~y(t) (4.5)
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if and only if
E(f)~yla)) (4.6)

Remark 4.3. We may restate Theorem 4.2 as follows: Under the
assumptions of Theorem 4.2, either (4.5) or (4.6) implies

Ef)~Q().0,) (4.7)

Proof. To prove that (4.5) implies (4.6) we first observe that (4.4)
implies
[ (Wieyo) do~ (o) (4.8)

0

for all positive o. We then use (4.1), (42), (4.5), and (4.8) with x=r to
obtain

i) < A (Em(fH 0y g, wa:‘,r))-

v=0

We can now follow the technique of the corresponding part of Theorem 2.2
to obtain

E, (/)= My(a,)
As we already have E, (f)< M, y(a),), this implies
E,(f)~yla,,).

Hence, using the conditions (4.3} and monotonicity of £,(f) and y(r), we
have

E(f)~dla)).
The proof of the implication
E(f)~¥lo,)=Q'(f.0,) SME, (/)< M*y(o})

is similar to that used in Theorem 2.2 and will be omitted. Using (4.1) and
monotonicity of Q'(f, ), we have

ELN) <M, [ (@(f 00 di < M,2(f. )

Y0
and therefore,

Qfo )~ELf) |



RATE OF APPROXIMATION AND SMOOTHNESS 329
5. TRIGONOMETRIC POLYNOMIAL APPROXIMATION

In this section, we deal with trigonometric polynomial approximation in
a Banach space X of functions or distributions on T (the “circle” [ — =, n]).
The translation or shift operator S, on X is given by

S, f(x)=f(x+m if fis a function
or by

(Spfg>=<{LS e,

where ge & if f €9, (Recall that ¥ is the space of tempered distribution
dual to the space of test functions .¥.) We further assume that S, is an
isometry and that either S, is weakly continuous, that is,

(S, f—fg>—0, as h—-0,forallge X* (dualto X), (5.1)

or that S, is weakly* continuous which means that X' = B* and

(.S, f—f>=0 as h—O0forallgeB. (5.2)

{Of course, S, is strongly continuous implies that S, is weakly continuous.)
Under these assumptions, one has the Jackson inequality

EX/Iv<Co'(fin My, (53)

where EX(f), and w'(f, 1) are given by (1.2) and (1.3) and C is inde-
pendent of », fand X (see [5, 6], for example).

Moreover, for the above situation 7,e X implies 7, X and hence,
T'”e X and the Bernstein inequality,

1T Ny <oIT, Iy forall T,e7, (5.4)

is satisfied (see [1, pp. 140-144; 5;6]).
The K-functional is given by

K.(f. 1) y= ":fy S~ glx+ 118" 5 (5.5)

where Y is the collection of g such that g', taken in the distributional
sense, satisfies g’ e X. Obviously, we can choose g € Y such that

o (L OS2 f =gl e+ 7187 <S27VKAL )y (5.6)
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and therefore, the conditions of Theorem 3.1 are valid. Following the
standard proof for C(T) or L,(T), one also has

KA(f. 1)y <Co'(f 1)y (5.7)

THEOREM 5.1.  Suppose X is a space of functions or distributions on T for
which a shift is an isometry satisfying (5.1) or (5.2) and Y € S. Then the
conditions

o' (fo 1)y ~yY(t") (5.8)
and

En(f‘))('\'l/j(l/nr) (59)

are equivalent, and either (5.8) or (5.9) implies

En(f‘)X ~ wr(/‘s 1/”)){"

Proof. This theorem is an immediate corollary of Theorem 2.1. To
satisfy the conditions of Theorem 2.1, we recall (5.3) and (5.4), replace ¢ by
t’, and observe that

K(f. 1)~ (f 1)y
which follows from (5.6) and (5.7). |]

6. ALGEBRAIC POLYNOMIAL APPROXIMATION ON [ —1,1]

In [7, Chap. 7], the rate of approximation of algebraic polynomials was
discussed for L,[ —1, 1], 1< p<oo. The K-functional

Ko(f0),= il (If=gl,+lee™l,), o= 1-x" (61)
g ed-

loc

was shown to be equivalent to a modulus of smoothness

wy(f,),= sup 4, fl,,  ox)=1-x (6.2)
O<h<t

(with the understanding that 4, f =0if (x —nr/2, x+nr/2)y ¢ [—1, 1]). As
the Jackson inequality

En(f)p=gi££ lg—fll, < Col(f l/n),<C K, (/n7), (6.3)
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[3, p. 79) and the Bernstein inequality

lo" PN, <Cr|Pl,.  Pe#.l<p<w (6.4)

/75
(see [7, p.107] with w=1) were already proved, we have the following

theorem as a corollary.

THEOREM 6.1. For Y€ S, w(f, 1), given by (6.2), and E,(f), given by
(6.3), the conditions

(fy )y~ (1)

and

EAf),~y(n"")
are equivalent.

Remark. For some particular functions () such as t* or *(log +)* it
was proved in [7] that w(f, t),~y(1") implies E,(f), ~y(n ")

7. BEST WEIGHTED ALGEBRAIC POLYNOMIAL APPROXIMATION IN L [ —1, 1]

The rate of best weighted algebraic polynomial approximation in L,
given by

E (), = I)inf/, w(f =Pl,r 10y (7.1)

was investigated in [7, Chap. 8] for weights we J*, where J¥ includes the
Jacobi weights w(x)=(1—x)"(1+x)* if v,>—1/p. For estimating
E, (/). p» the main-part moduli Q7(f, t),. , given by (for ¢(x)=/1 —x%)

Q(f, ). ,= sup [wd Al L0 =1+ 222 1 — 27 202] (7.2)

O<hs<r

were indispensable. The weak Jackson inequality

E,<C[ @y nm (73)

was proved in [7, p. 94]. Therefore, we have the following result.

Tueorem 7.1. Suppose E,(f).., and Q,(f, 1), , are given by (7.1) and

(7.2), respectively, w(x)= (14 x)" (1 —xy2 with y,> — 1/p, p(x)= /1 —x,
and \y € S* (see Definition 4.1). Then

QL Dy~ Yl
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and
E(f) ,~yn )

are equivalent.

Remark 7.2. Theorem 7.1 is valid for a somewhat more general class of
weights called J* in [7].
Proof. We recall that for w{x)={14+x)"(1-x)" 73,>—1/p,

I < p< oo, (and actually for the wider class J ¥ which includes for instance

w(x)= (14 x)" (1 —x)" (jlog(1 + x)|" [log(1 — x)|*, »,> —1/p) one has
”""(Prpmi‘/w[ L SCTwPI e s Pe, (7.4)

{see [7.p.107]). We can now follow the proof of Theorem 8.2.1 of [7,
p. 96] to obtain

wd /ru,;fHLp[ Up 21 20
SM(Iw(f— Pyl Ll 11 + hrh“'@rp(zrf’ | LloL i7) (7.5)
from which one can easily deduce
k
pr(f’ [)u;p < ‘Ml |:E2“(.f)w. r + r Z ZWEZ"(Af)M‘/vA\' (76)
v=40 B

The formula (7.6) is the weak-type result (4.2) (f=1/2) for our case and
hence, we can follow the result of Section 4 to complete the proof. ||

8. WEIGHTED POLYNOMIAL APPROXIMATION IN L (R)

We will apply here the result of Section 4 to weighted polynomial
approximation with Freud’s weight

W, (x)=exp(—|x]"), 2> 1.

s

The rate of best polynomial approximation is given by

E(w, p= Plﬂi IWf =Pl i) (8.1)

We note that more general situations than W, were investigated for which
analogous results would be achieved with minor but messy modifications of
the results in Section 4. The related main-part moduli are given by

Qr(f;t)VV,,pE sup HWAA;LH\LF[ LA i ) {8.2)

O<hsr
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In [7, Chap. 117, the weak Jackson inequality

anll s
Efw, ,<C| Q) Dy /) di+Ce ™ W flL, (8.3)
b
was proved.
The Bernstein inequality (see for instance [7, p. 185])

W, P 1.,,(R)<C”€}' e W.P| Lot RY Pe#, {8.4)

will complete the necessary prerequisites for a result of the type given in
Section 4 and hence, we can derive the following theorem.

THEOREM 8.1, Suppose Q'(f. 1)y, , and E(f ), ,are given by (8.2) and
(8.1) where W(x)=exp(—|x|*), 2> 1, and 1 < p<oc. Then for e S*, the
conditions

Qr(f’ f)uf)_,p ~ w(fz')
and

En(f)w,.,, ~ zj/(n —rtl (1./1)3}
are equivalent.

Remark 82. In[7, Chap. 11], theconcepts K,(f, "), ,andwX*(f. 1)y, ,
were also discussed. If these concepts rather than Q'(f, 1), , were used in
Theorem 8.1, we could relax the condition on ¢ and assume only i € § as
we could apply Theorem 2.2 rather than 4.2

We also should remark that for some particular functions ¥(r), the
implication  Q'(f, )y, ,~¥(t") implies E,(f)u. ,~y(n~"" ") was
shown in [7].

9. MULTIVARIATE BEST APPROXIMATION

On the domain S < R? we can define best nth degree algebraic polyno-
mial approximation by

E,,(f)ws, =inf{|| f — P||; P a polynomial of total degree n}.  (9.1)

We recall that a polytope is the convex hull of finitely many points and a
simple polytope S < R? is a polytope with an interior point for which any
one of its vertices is connected to other vertices by exactly 4 edges. For a
simple polytope, the moduli of smoothness w(f, 1), and &%{ /. 1), were
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defined in [7, p. 2027]. As a corollary of results in [7] and in Section 2, we
obtain the following theorem.

THEOREM 9.1. Suppose S is a simple polytope, S<RY 1< p< w0,
ws(f. 1), and &(f, 1), are as defined in [7, p. 202] and y € S. Then

E (/)15 ~ (1),
w(f. 1), ~ (1),
and
O 1~y
are equivalent.

Remark 9.2. When discussing @(f, t), and w'c(f, t),, we should recall
the definitions of these measures of smoothness. For 1 < p <«

oL P

a5(f,= X 4] |
cepd | veet Y o«
OG<h<t

I/p
Alptcie s 1 sen2 f(X +Ae)| dr dm(,(x)} .(9.2)

where V¢ ' is the set of unit vectors in R%, m, is the (m — 1) dimensional
Lebesgue measure on ¢*, and

dele, x)=( min d(x, x+7e))( max d(x+Aie, x+ire)). (9.3)

Y+ Ae¢ S x+ /4,8

Similarly, @%5(f, t).. is defined. The modulus ws(f, 1), is defined using (2.9)
where instead of taking the supremum for all ee V!, we take it only in
directions parallel to the edges of the simplex.

Proof. The Jackson inequality
E(Nus SMIws(f 1), +n "l f1,]
sMlos(f 1n), +a "I /1, ] (9.4)
is given in [7, (12.2.3)] and the weak-type result
ws(fi 1), <a5(f 1),

k
C[Ezf(f)zm(sﬁrt' > 2"’Ez‘(f)Lﬂ¢s;+”Hfhp(si (9.5)
v=1{0
is achieved as a step in the proof of (12.2.3) in [7] (see [7, p. 206] used
without the restriction 2/ < 1/r < 2/*1").
We use (9.5) and (9.4) to obtain our result. We recall that we may deal
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with the moduli of smoothness rather than the K-functional as was done in
Section 4. |}

Remark 9.3. The Bernstein inequality of the approximation process by
best algebraic polynomials on a simple polytope can be given explicitly but
the inequality (9.5) is much simpler and is what we need here.

For a Banach function space X on T satisfying conditions (5.1) or (5.2),
we define

E(f)x=inf |f—1], (9.6)

TE€E Ty

where 7, i1s the set of trigonometric polynomials of degree » in each
direction. We define

o' (f.)x= sup 401y, (9.7)

O< el <t
where

A fu)y=A47"(flu+(0/2))— flu—(v/2))),  wveR"  (98)
We now have the following generalization of Theorem 5.1

THEOREM 9.4. Suppose X is a Banach space of functions or distributions
on T satisfying (5.1) or (5.2) and Y € S. Then

E(f)x~(n™")

and
o' (f, Dy ~yYl(t")

are equivalent for E,(f}y and o'(f, 1)y given by (9.6) and (9.7), respectively.
Proof. For X=L_(T%), we have

E(f)x<Co'(f 1/n)x (9.9)

and

k
O ([ 1)y <2 Ex(f)x+Ct" Y 27Ex(f)y- (9.10)
v=0
While we could not find the statements (9.9) and (9.10), they can be shown

following the more complicated case proved in [7, Chap. 12], and
probably are known (at least for fe L (79)). In [10, p. 273, 350], much
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more complicated formulas appear which cannot be used here. From (9.9)
and (9.10) for X =L, (T“), we get these formulas for X satisfying (5.1) or
(5.2) using the same steps used in [5, 6]. We now follow earlier sections to
obtain our theorem from (9.9) and (9.10). |

10. SOME LINEAR APPROXIMATION
The theorem in Section 3 was tailor-made to fit many linear approxima-
tion processes.

For example, for convolution approximation processes we have:

THEOREM 10.1.  Suppose the sequence G,(x) of functions on R or T
satisfy

(a) 1G,ll ., < M,
(b) . G i'di=ola))  for O<i<r,
(c) i G () di=1,

(d) [1171G, 1)1 di = 0(a}), and

(e) I |G()] dt =O(a, ")

Jor a,=o0(1) satisfying o, = ca, for some ¢ > 0.

Then for Yy e S and B a Banach space of functions on R or T for which
translation is a continuous isometry

HGN *fffHB‘v l//(O':’)

and

W' (fL ) p~y")
are equivalent, and each imply

o (£,0,)s~1G,* /[l 5

Proof. We define

Gn.r(,)EG 3 *Gn(,)7 GrLI(I)EGn(r)v Gn.()(r)zl- (]01)

nor -
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Assumption (a) now implies
1Gux * Fa<MIG, o 1% fla< M S5, (10.2)
and

G x f— flg\}: 1G,. * (Gyx [~ s

v ()

SU+M+ M WG, * =)l p (10.3)

The assumptions (b), (¢), and (d) imply for ge B where g' the rth
strong derivative of g in B satisfies ¢ ¢ B,

’IG” * g o g' Bgco.milgwlll
and therefore,
1Gi*g—gla<Cl+ - + MY Ha)lig"ls<Ciaplig" ]y (104)

The assumption (e) implies

I d T
‘ (i\ Eﬁn H/ “B*
and therefore, for k= r,
b7 dN” ) )
i\dx 1B

For ge B the subspace for which the strong r derivative of g in B exists
and @(g)=||g"| < o, we have

L/dy\ ' : ‘
§z(;§> G gl <M1, (106)
AU in

Using Theorem 3.1, we have for k= r

o' ([ s~y =[G * = g~ ylo)).
Using {10.3), we have
NGk [ =152 AY(a)).
We also have
NG, * f = flla< NG % (f =G *x fMg+ G x [~ fll5
SMIG, , « f=fllg+1G,, oo xf= [l (10.7)
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and therefore,

1G, * = [lig<Adla,).

We now deduce from |G, * /' — f| g~ ¥(a’) using (10.3) and (10.7) that

AUlor) <max([G,, * [ = [l G, x /= flig) < Aslo)).

Now G ¥ which is equal to G, , or G, , ., whichever achieves the maxi-
mum above, satisfies the conditions of Theorem 3.2 and implies

DUV PR U |

In {7, Chap. 9], combinations of Bernstein-type operators L, (/) were
discussed and related to the moduli (ui,"(_/; 1), where ¢ depended on the
particular approximation process. (For instance for combinations of
Bernstein polynomials, ¢(x)>= x(1 —x).) We use the inequality (9.3.1) of
[7] for the Jackson inequality with (1)30'(‘/‘; 1), taking the place of K(f. (%),
in (3.1). We use (9.3.2) of [7] for the crucial inequality (3.9) (again with
wX(f 1), standing for K(f ¢¥),). With the above, we now have the
following theorem.

THEOREM 10.2.  For L, (f) given in |7, Theorem 9.3.27] and y(t)e S
Wy (o 1), ~(r™) (10.8)
and
IL, = fl,~¥(n ") (10.9)

are equivalent.

In [7, Corollary 9.3.87], it was shown that a somewhat stronger condition
than (10.8) implies (10.9).

For the reader who is not familiar with combinations of exponential type
operators as given in [7, Chap. 9], we give the following special case of
Theorem 10.2.

COROLLARY 10.3.  For ¢ € S the conditions

K, (f, Me=inf () f— glero iyt (1 = x)? gM)H(‘[o. 1)~ Yirt (10.10)
2

and

5

Hsznf— an*f” oo™ ‘//(’7 ), (10.11)
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where

are equivalent.

Exponential type operators include other operators like Baskakov,
Szasz-Mirakjan, Gauss—Welerstrass, and Post-Widder operators. L, (/)
of Theorem 10.2 include also modification following Kantorovich to
accommodate L, spaces as well as combinations that accommodate any
fixed degree of smoothness.
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